
Week 6 - Monday

 What did we talk about last time?
 JFrame
 Widgets
 JButton
 JLabel
 JTextField
 JTextArea

 Started layout

 When you add a widget to a JFrame (or to a JPanel), its layout
manager determines how it will be arranged

 There are lots of layout managers, but it's worth mentioning four:
 BorderLayout
 GridLayout
 FlowLayout
 BoxLayout

 Note that we won't talk about BoxLayout, but you should look it up if you get
serious about Swing GUIs

 BoxLayoutmakes it easy to arrange widgets in a horizontal or vertical line,
with different amount of spacing between widgets

 BorderLayout is the default layout for JFrame
 When you add widgets, you can specify the location as one

of five regions:
 BorderLayout.NORTH stretches the width of the container

on the top
 BorderLayout.SOUTH stretches the width of the container

on the bottom
 BorderLayout.EAST sits on the right of the container,

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.WEST sits on the left of the container,

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.CENTER sits in the middle of the container

and stretches to fill all available space
 If you don't specify where you're adding a widget, it adds to

CENTER
 If you add more than one widget to a region, the new one

replaces the old
 Unused regions disappear

 GridLayout allows you to create a
grid with a specific number of rows and
columns

 All the cells in the grid are the same
size

 As you add widgets, they fill each row

frame.setLayout(new GridLayout(4, 5));
for(int row = 0; row < 4; ++row)
for(int column = 0; column < 5; ++column)

frame.add(new JButton("" + (row * 5 + column + 1)));

 FlowLayout is the default
layout manager for JPanel

 Widgets are arranged in
centered rows in
FlowLayout

 If you keep adding widgets to
a FlowLayout, they'll fill the
current row until there's no
more room

 Then, they'll flow onto the
next row

 It's ugly but easy to use

frame.setLayout(new FlowLayout());
frame.add(new JButton("Flow"));
frame.add(new JButton("Flow"));
frame.add(new JButton("Flow"));
frame.add(new JButton("Your"));
frame.add(new JButton("Boat"));
frame.add(new JButton("Gently"));
frame.add(new JButton("Down"));
frame.add(new JButton("The"));
frame.add(new JButton("Stream"));

 A JPanel is an invisible container that:
 Acts like a widget in that you can add it to a JFrame (or another
JPanel)
 Can hold other widgets
 Can have its layout customized with a layout manager

 What if you have a BorderLayout and you want the EAST
region to contain widgets arranged with a GridLayout?

 Easy: you create a JPanel, set its layout manager to
GridLayout, add it to the EAST region, then add widgets
to the JPanel

 For complicated layouts
 Sketch out what you want it to look like
 Use BorderLayouts to give components a spatial

relationship
 Nest JPanels inside of JPanels (inside of
JPanels…) if you need to

 Use GridLayouts whenever you want to have a grid
 Be patient: it's hard to get it right the first time

JPanel buttonPanel = new JPanel(new GridLayout(4,1));
buttonPanel.add(new JButton("Kick"));
buttonPanel.add(new JButton("Punch"));
buttonPanel.add(new JButton("Backflip"));
buttonPanel.add(new JButton("Dodge"));
frame.add(buttonPanel, BorderLayout.EAST);
frame.add(new JLabel("Karate Story"), BorderLayout.NORTH);
frame.add(new JTextArea(), BorderLayout.CENTER);

 Make the GUI for a calculator
 Title the JFrame "Calculator"
 Text field at the top giving the current value
 Grid of 16 buttons (0-9, ., +, -, *, /, Enter)

 We have added JButtons to JFrames, but those buttons
don't do anything

 When clicked, a JButton fires an event
 We need to add an action listener to do something when that

event happens
 A CLI program runs through loops, calls methods, and makes

decisions until it runs out of stuff to do
 GUIs usually have this event-based programming model
 They sit there, waiting for events to cause methods to get

called

 What can listen for a JButton to click?
 Any object that implements ActionListener
 ActionListener is an interface like any other with a single

abstract method in it:

void actionPerformed(ActionEvent e);

 We need to write a class with such a method
 We will rarely need to worry about the ActionEvent object
 But it does have a getSource()method that will give us the
Object (often a JButton) that fired the event

 Now, we get to something tricky
 It's possible to create a class on the fly, right in the middle of other code
 Consider the following interface:

 We can create, in the middle of other code, a class that implements
NoiseMaker, like this:

public interface NoiseMaker {
String makeNoise();

}

NoiseMaker maker = new NoiseMaker() {
public String makeNoise() {

return "Yowza!";
}

};

 What the hell is that?
 Aren't we instantiating an interface, which is impossible?
 No, this makes a new, unnamed class that implements an

interface or extends a parent class, on the fly, at the same
moment you're allocating it

System.out.println("Minding my business..."); // normal code
NoiseMaker maker = new NoiseMaker() { // create a class

public String makeNoise() {
return "Yowza!";

}
};

 The reason we brought up anonymous inner classes is that we can
use this syntax to make an ActionListener object right when
we need it, for a button

 It's ugly, but it works

JButton button = new JButton("Push me!");
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
button.setText("Ouch!"); // arbitrary code

}
}); // ugly: parenthesis for end of method call

 Call arbitrary methods
 setText() sets the text on many widgets
 getText() gets the text from widgets so you can do something with it
 Both setText() and getText() apply to:
 JButton
 JLabel
 JTextField
 JTextArea

 setIcon() sets the icon on many widgets
 JButton
 JLabel

 setEnabled() can be used to enable and disable buttons

 Before Java 8, we only had two choices:
 Make a whole class that implements ActionListener and might have

to do different actions based on which button fired the event
 Make a separate anonymous inner class for every single button, each

doing the action for that button
 Java 8 adds something called lambdas which actually make

anonymous inner classes too, but the syntax is much nicer
 Java 8 style:

JButton button = new JButton("Push me!");
button.addActionListener(e -> button.setText("Ouch!"));

 An interface with only a single method in it (like ActionListener) is called a
functional interface

 Java 8 lets us instantiate functional interface by filling out the method:
(Type1 arg1, Type2 arg2, …) -> { /* method body */ }
 But if it's possible for the compiler to infer the argument types, they don't have

to be written
 If you only have a single argument, you don't need parentheses
 And if you only have a single line in your method body, you don't need braces
 Multi-line example:

JButton button = new JButton("Push me!");
button.addActionListener(e -> {

button.setText("Ouch!");
button.setEnabled(false);

});

 Using lambdas looks cleaner, but the same anonymous inner
classes are being created

 When you write code in the method of an anonymous inner class
 You can refer to member variables and methods in the anonymous inner

class (if any)
 You can refer to member variables and methods in the surrounding object

(even private ones)
 You can generally read the values of local variables, but you cannot

change them
 Don't worry too much about all this
 Just write your action listeners and come see me if you have

problems

 Using this information about action listeners, we should be able to make
calculator GUI we created functional

 Buttons 0-9 and . should add the appropriate symbol to the display
JTextField

 Buttons +, -, *, and /
 Should parse what's in the JTextField into a double and store it in a member

variable
 Store the appropriate operation in a member variable (maybe as a char?)
 Should clear the JTextField

 Button =
 Should parse what's in the JTextField into a double
 Perform the operation that was stored earlier with this value and the value stored earlier
 Should put the result back in the JTextField

 Finish calculator example
 Mouse listeners
 Playing sounds
 Menus

 Keep reading Chapter 15
 Keep working on Project 2

	COMP 2000
	Last time
	Questions?
	Project 2
	Layout Managers
	Layout managers
	BorderLayout
	GridLayout
	FlowLayout
	JPanel
	Complicated layouts
	Calculator example
	Action Listeners
	Making buttons do things
	ActionListener interface
	Anonymous inner classes
	Anonymous inner classes continued
	Adding an action listener
	Things you might do in an action listener
	Java 8 style
	More on Java 8 style
	Weird rules
	Make the calculator work
	Upcoming
	Next time…
	Reminders

