
Week 6 - Monday



 What did we talk about last time?
 JFrame
 Widgets
 JButton
 JLabel
 JTextField
 JTextArea

 Started layout









 When you add a widget to a JFrame (or to a JPanel), its layout 
manager determines how it will be arranged

 There are lots of layout managers, but it's worth mentioning four:
 BorderLayout
 GridLayout
 FlowLayout
 BoxLayout

 Note that we won't talk about BoxLayout, but you should look it up if you get 
serious about Swing GUIs

 BoxLayoutmakes it easy to arrange widgets in a horizontal or vertical line, 
with different amount of spacing between widgets



 BorderLayout is the default layout for JFrame
 When you add widgets, you can specify the location as one 

of five regions:
 BorderLayout.NORTH stretches the width of the container 

on the top
 BorderLayout.SOUTH stretches the width of the container 

on the bottom
 BorderLayout.EAST sits on the right of the container, 

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.WEST sits on the left of the container, 

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.CENTER sits in the middle of the container 

and stretches to fill all available space
 If you don't specify where you're adding a widget, it adds to 

CENTER
 If you add more than one widget to a region, the new one 

replaces the old
 Unused regions disappear



 GridLayout allows you to create a 
grid with a specific number of rows and 
columns

 All the cells in the grid are the same 
size

 As you add widgets, they fill each row

frame.setLayout(new GridLayout(4, 5));
for(int row = 0; row < 4; ++row)
for(int column = 0; column < 5; ++column)

frame.add(new JButton("" + (row * 5 + column + 1)));



 FlowLayout is the default 
layout manager for JPanel

 Widgets are arranged in 
centered rows in 
FlowLayout

 If you keep adding widgets to 
a FlowLayout, they'll fill the 
current row until there's no 
more room 

 Then, they'll flow onto the 
next row

 It's ugly but easy to use

frame.setLayout(new FlowLayout());
frame.add(new JButton("Flow"));
frame.add(new JButton("Flow"));
frame.add(new JButton("Flow"));
frame.add(new JButton("Your"));
frame.add(new JButton("Boat"));
frame.add(new JButton("Gently"));
frame.add(new JButton("Down"));
frame.add(new JButton("The"));
frame.add(new JButton("Stream"));



 A JPanel is an invisible container that:
 Acts like a widget in that you can add it to a JFrame (or another 
JPanel)
 Can hold other widgets
 Can have its layout customized with a layout manager

 What if you have a BorderLayout and you want the EAST
region to contain widgets arranged with a GridLayout?

 Easy: you create a JPanel, set its layout manager to 
GridLayout, add it to the EAST region, then add widgets 
to the JPanel



 For complicated layouts
 Sketch out what you want it to look like
 Use BorderLayouts to give components a spatial 

relationship
 Nest JPanels inside of JPanels (inside of 
JPanels…) if you need to

 Use GridLayouts whenever you want to have a grid
 Be patient: it's hard to get it right the first time

JPanel buttonPanel = new JPanel(new GridLayout(4,1));
buttonPanel.add(new JButton("Kick"));
buttonPanel.add(new JButton("Punch"));
buttonPanel.add(new JButton("Backflip"));
buttonPanel.add(new JButton("Dodge"));
frame.add(buttonPanel, BorderLayout.EAST);
frame.add(new JLabel("Karate Story"), BorderLayout.NORTH);
frame.add(new JTextArea(), BorderLayout.CENTER);



 Make the GUI for a calculator
 Title the JFrame "Calculator"
 Text field at the top giving the current value
 Grid of 16 buttons (0-9, ., +, -, *, /, Enter)





 We have added JButtons to JFrames, but those buttons 
don't do anything

 When clicked, a JButton fires an event
 We need to add an action listener to do something when that 

event happens
 A CLI program runs through loops, calls methods, and makes 

decisions until it runs out of stuff to do
 GUIs usually have this event-based programming model
 They sit there, waiting for events to cause methods to get 

called



 What can listen for a JButton to click?
 Any object that implements ActionListener
 ActionListener is an interface like any other with a single 

abstract method in it:

void actionPerformed(ActionEvent e);

 We need to write a class with such a method
 We will rarely need to worry about the ActionEvent object
 But it does have a getSource()method that will give us the 
Object (often a JButton) that fired the event



 Now, we get to something tricky
 It's possible to create a class on the fly, right in the middle of other code
 Consider the following interface:

 We can create, in the middle of other code, a class that implements 
NoiseMaker, like this:

public interface NoiseMaker {
String makeNoise();

}

NoiseMaker maker = new NoiseMaker() {
public String makeNoise() {

return "Yowza!";
}

};



 What the hell is that?
 Aren't we instantiating an interface, which is impossible?
 No, this makes a new, unnamed class that implements an 

interface or extends a parent class, on the fly, at the same 
moment you're allocating it

System.out.println("Minding my business..."); // normal code
NoiseMaker maker = new NoiseMaker() { // create a class

public String makeNoise() {
return "Yowza!";

}
};



 The reason we brought up anonymous inner classes is that we can 
use this syntax to make an ActionListener object right when 
we need it, for a button

 It's ugly, but it works

JButton button = new JButton("Push me!");
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
button.setText("Ouch!"); // arbitrary code

}
}); // ugly: parenthesis for end of method call



 Call arbitrary methods
 setText() sets the text on many widgets
 getText() gets the text from widgets so you can do something with it
 Both setText() and getText() apply to:
 JButton
 JLabel
 JTextField
 JTextArea

 setIcon() sets the icon on many widgets
 JButton
 JLabel

 setEnabled() can be used to enable and disable buttons



 Before Java 8, we only had two choices:
 Make a whole class that implements ActionListener and might have 

to do different actions based on which button fired the event
 Make a separate anonymous inner class for every single button, each 

doing the action for that button
 Java 8 adds something called lambdas which actually make 

anonymous inner classes too, but the syntax is much nicer
 Java 8 style:

JButton button = new JButton("Push me!");
button.addActionListener(e -> button.setText("Ouch!"));



 An interface with only a single method in it (like ActionListener) is called a 
functional interface

 Java 8 lets us instantiate functional interface by filling out the method:
(Type1 arg1, Type2 arg2, …) -> { /* method body */  }
 But if it's possible for the compiler to infer the argument types, they don't have 

to be written
 If you only have a single argument, you don't need parentheses
 And if you only have a single line in your method body, you don't need braces
 Multi-line example:

JButton button = new JButton("Push me!");
button.addActionListener(e -> {

button.setText("Ouch!");
button.setEnabled(false);

});



 Using lambdas looks cleaner, but the same anonymous inner 
classes are being created

 When you write code in the method of an anonymous inner class
 You can refer to member variables and methods in the anonymous inner 

class (if any)
 You can refer to member variables and methods in the surrounding object 

(even private ones)
 You can generally read the values of local variables, but you cannot

change them
 Don't worry too much about all this
 Just write your action listeners and come see me if you have 

problems



 Using this information about action listeners, we should be able to make 
calculator GUI we created functional

 Buttons 0-9 and . should add the appropriate symbol to the display 
JTextField

 Buttons +, -, *, and /
 Should parse what's in the JTextField into a double and store it in a member 

variable
 Store the appropriate operation in a member variable (maybe as a char?)
 Should clear the JTextField

 Button =
 Should parse what's in the JTextField into a double
 Perform the operation that was stored earlier with this value and the value stored earlier
 Should put the result back in the JTextField





 Finish calculator example
 Mouse listeners
 Playing sounds
 Menus



 Keep reading Chapter 15
 Keep working on Project 2
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