
Week 6 - Monday

 What did we talk about last time?
 JFrame
 Widgets
 JButton
 JLabel
 JTextField
 JTextArea

 Started layout

 When you add a widget to a JFrame (or to a JPanel), its layout
manager determines how it will be arranged

 There are lots of layout managers, but it's worth mentioning four:
 BorderLayout
 GridLayout
 FlowLayout
 BoxLayout

 Note that we won't talk about BoxLayout, but you should look it up if you get
serious about Swing GUIs

 BoxLayoutmakes it easy to arrange widgets in a horizontal or vertical line,
with different amount of spacing between widgets

 BorderLayout is the default layout for JFrame
 When you add widgets, you can specify the location as one

of five regions:
 BorderLayout.NORTH stretches the width of the container

on the top
 BorderLayout.SOUTH stretches the width of the container

on the bottom
 BorderLayout.EAST sits on the right of the container,

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.WEST sits on the left of the container,

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.CENTER sits in the middle of the container

and stretches to fill all available space
 If you don't specify where you're adding a widget, it adds to

CENTER
 If you add more than one widget to a region, the new one

replaces the old
 Unused regions disappear

 GridLayout allows you to create a
grid with a specific number of rows and
columns

 All the cells in the grid are the same
size

 As you add widgets, they fill each row

frame.setLayout(new GridLayout(4, 5));
for(int row = 0; row < 4; ++row)
for(int column = 0; column < 5; ++column)

frame.add(new JButton("" + (row * 5 + column + 1)));

 FlowLayout is the default
layout manager for JPanel

 Widgets are arranged in
centered rows in
FlowLayout

 If you keep adding widgets to
a FlowLayout, they'll fill the
current row until there's no
more room

 Then, they'll flow onto the
next row

 It's ugly but easy to use

frame.setLayout(new FlowLayout());
frame.add(new JButton("Flow"));
frame.add(new JButton("Flow"));
frame.add(new JButton("Flow"));
frame.add(new JButton("Your"));
frame.add(new JButton("Boat"));
frame.add(new JButton("Gently"));
frame.add(new JButton("Down"));
frame.add(new JButton("The"));
frame.add(new JButton("Stream"));

 A JPanel is an invisible container that:
 Acts like a widget in that you can add it to a JFrame (or another
JPanel)
 Can hold other widgets
 Can have its layout customized with a layout manager

 What if you have a BorderLayout and you want the EAST
region to contain widgets arranged with a GridLayout?

 Easy: you create a JPanel, set its layout manager to
GridLayout, add it to the EAST region, then add widgets
to the JPanel

 For complicated layouts
 Sketch out what you want it to look like
 Use BorderLayouts to give components a spatial

relationship
 Nest JPanels inside of JPanels (inside of
JPanels…) if you need to

 Use GridLayouts whenever you want to have a grid
 Be patient: it's hard to get it right the first time

JPanel buttonPanel = new JPanel(new GridLayout(4,1));
buttonPanel.add(new JButton("Kick"));
buttonPanel.add(new JButton("Punch"));
buttonPanel.add(new JButton("Backflip"));
buttonPanel.add(new JButton("Dodge"));
frame.add(buttonPanel, BorderLayout.EAST);
frame.add(new JLabel("Karate Story"), BorderLayout.NORTH);
frame.add(new JTextArea(), BorderLayout.CENTER);

 Make the GUI for a calculator
 Title the JFrame "Calculator"
 Text field at the top giving the current value
 Grid of 16 buttons (0-9, ., +, -, *, /, Enter)

 We have added JButtons to JFrames, but those buttons
don't do anything

 When clicked, a JButton fires an event
 We need to add an action listener to do something when that

event happens
 A CLI program runs through loops, calls methods, and makes

decisions until it runs out of stuff to do
 GUIs usually have this event-based programming model
 They sit there, waiting for events to cause methods to get

called

 What can listen for a JButton to click?
 Any object that implements ActionListener
 ActionListener is an interface like any other with a single

abstract method in it:

void actionPerformed(ActionEvent e);

 We need to write a class with such a method
 We will rarely need to worry about the ActionEvent object
 But it does have a getSource()method that will give us the
Object (often a JButton) that fired the event

 Now, we get to something tricky
 It's possible to create a class on the fly, right in the middle of other code
 Consider the following interface:

 We can create, in the middle of other code, a class that implements
NoiseMaker, like this:

public interface NoiseMaker {
String makeNoise();

}

NoiseMaker maker = new NoiseMaker() {
public String makeNoise() {

return "Yowza!";
}

};

 What the hell is that?
 Aren't we instantiating an interface, which is impossible?
 No, this makes a new, unnamed class that implements an

interface or extends a parent class, on the fly, at the same
moment you're allocating it

System.out.println("Minding my business..."); // normal code
NoiseMaker maker = new NoiseMaker() { // create a class

public String makeNoise() {
return "Yowza!";

}
};

 The reason we brought up anonymous inner classes is that we can
use this syntax to make an ActionListener object right when
we need it, for a button

 It's ugly, but it works

JButton button = new JButton("Push me!");
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
button.setText("Ouch!"); // arbitrary code

}
}); // ugly: parenthesis for end of method call

 Call arbitrary methods
 setText() sets the text on many widgets
 getText() gets the text from widgets so you can do something with it
 Both setText() and getText() apply to:
 JButton
 JLabel
 JTextField
 JTextArea

 setIcon() sets the icon on many widgets
 JButton
 JLabel

 setEnabled() can be used to enable and disable buttons

 Before Java 8, we only had two choices:
 Make a whole class that implements ActionListener and might have

to do different actions based on which button fired the event
 Make a separate anonymous inner class for every single button, each

doing the action for that button
 Java 8 adds something called lambdas which actually make

anonymous inner classes too, but the syntax is much nicer
 Java 8 style:

JButton button = new JButton("Push me!");
button.addActionListener(e -> button.setText("Ouch!"));

 An interface with only a single method in it (like ActionListener) is called a
functional interface

 Java 8 lets us instantiate functional interface by filling out the method:
(Type1 arg1, Type2 arg2, …) -> { /* method body */ }
 But if it's possible for the compiler to infer the argument types, they don't have

to be written
 If you only have a single argument, you don't need parentheses
 And if you only have a single line in your method body, you don't need braces
 Multi-line example:

JButton button = new JButton("Push me!");
button.addActionListener(e -> {

button.setText("Ouch!");
button.setEnabled(false);

});

 Using lambdas looks cleaner, but the same anonymous inner
classes are being created

 When you write code in the method of an anonymous inner class
 You can refer to member variables and methods in the anonymous inner

class (if any)
 You can refer to member variables and methods in the surrounding object

(even private ones)
 You can generally read the values of local variables, but you cannot

change them
 Don't worry too much about all this
 Just write your action listeners and come see me if you have

problems

 Using this information about action listeners, we should be able to make
calculator GUI we created functional

 Buttons 0-9 and . should add the appropriate symbol to the display
JTextField

 Buttons +, -, *, and /
 Should parse what's in the JTextField into a double and store it in a member

variable
 Store the appropriate operation in a member variable (maybe as a char?)
 Should clear the JTextField

 Button =
 Should parse what's in the JTextField into a double
 Perform the operation that was stored earlier with this value and the value stored earlier
 Should put the result back in the JTextField

 Finish calculator example
 Mouse listeners
 Playing sounds
 Menus

 Keep reading Chapter 15
 Keep working on Project 2

	COMP 2000
	Last time
	Questions?
	Project 2
	Layout Managers
	Layout managers
	BorderLayout
	GridLayout
	FlowLayout
	JPanel
	Complicated layouts
	Calculator example
	Action Listeners
	Making buttons do things
	ActionListener interface
	Anonymous inner classes
	Anonymous inner classes continued
	Adding an action listener
	Things you might do in an action listener
	Java 8 style
	More on Java 8 style
	Weird rules
	Make the calculator work
	Upcoming
	Next time…
	Reminders

